

Welcome to pandastable documentation.

Contents:

	Introduction

	Current Features

	The DataExplore application

	Links

	Citation

	Installation
	For Dataexplore

	pandastable library

	Linux

	Windows

	Mac OSX

	Using DataExplore
	Purpose of the program

	Table layout

	Command Line

	Import text files

	Saving data

	Getting table info

	Cleaning data

	String operations

	Summarizing and grouping data

	Merging two tables

	Pivoting tables

	Transpose tables

	Filtering tables

	Applying functions

	Converting column names

	Resampling columns

	Plot options

	Plotting grouped data

	Plotting in a grid

	Animated plots

	Table Coloring

	Setting preferences

	Batch processing

	Other examples

	Code Examples
	Basics

	Sub-class the Table

	Table methods

	Accessing and modifying data directly

	Set table attributes

	Set Preferences

	Table Coloring

	Writing DataExplore Plugins

	Freezing the app

	pandastable
	pandastable package

Indices and tables

	Index

	Module Index

	Search Page

Introduction

The pandastable library provides a table widget for Tkinter with
plotting and data manipulation functionality. It uses the pandas
DataFrame class to store table data. Pandas is an open source Python
library providing high-performance data structures and data analysis
tools. Tkinter is the standard GUI toolkit for python. It is intended
for the following uses:

	for python/tkinter GUI developers who want to include a table in
their application that can store and process large amounts of data

	for non-programmers who are not familiar with Python or the pandas
API and want to use the included DataExplore application to
manipulate/view their data

	it may also be useful for data analysts and programmers who want to
get an initial interactive look at their tabular data without coding

Current Features

	add, remove rows and columns

	spreadsheet-like drag, shift-click, ctrl-click selection

	edit individual cells

	sort by column, rename columns

	reorder columns dynamically by mouse drags

	set some basic formatting such as font, text size and column width

	save the DataFrame to supported pandas formats

	import/export of supported text files

	rendering of very large tables is only memory limited

	interactive plots with matplotlib, mostly using the pandas plot functions

	basic table manipulations like aggregate and pivot

	filter table using built in dataframe functionality

	graphical way to perform split-apply-combine operations

The DataExplore application

Installing the package creates a command dataexplore in your path. Just run this to open the program. This is a standalone application for data manipulation and plotting meant for education and basic data analysis. More details are in the ‘Using dataexplore’ section. Also see the home page for this application at http://dmnfarrell.github.io/pandastable/

Links

http://openresearchsoftware.metajnl.com/articles/10.5334/jors.94/

http://dmnfarrell.github.io/pandastable/

https://youtu.be/Ss0QIFywt74

Citation

If you use this software in your work please cite the following article:

Farrell, D 2016 DataExplore: An Application for General Data Analysis in Research and Education. Journal of Open Research Software, 4: e9, DOI: http://dx.doi.org/10.5334/jors.94

Installation

For Dataexplore

For Windows users there is an MSI installer for the DataExplore application. This is recommended for anyone using windows not using the library directly as a widget.

On linux snaps are highly recommended:

snap install dataexplore

pandastable library

On all operating systems installations of Python should include the pip tool. If not use your distributions package manager to install pip first. Then a simple call as follows should install all dependencies:

pip install pandastable

This might not work well in some cases because matplotlib has library dependencies that users might find confusing. Though it should work ok on recent versions of Ubuntu. Advice for each OS is given below.

Dependencies

	numpy

	pandas

	matplotlib

	numexpr

Optional dependencies

	statsmodels

	seaborn (requires scipy)

Linux

For the python linbrary using easy_install or pip should work well but for matplotlib might require more packages such as python headers for compiling the extension. You need the tk8.6-dev package to provide the tkagg backend.

Otherwise, to use the package manager in Ubuntu/Debian based distributions you can issue the command:

sudo apt install python-matplotlib

You should install pandas with pip as it will provide the most recent version. This will likely be done automatically anyway:

For python 3 installs

You need to use the command pip3 instead if python 2 is also on your system, like in Ubuntu. When installing packages with apt you likely need to specify python 3. e.g. python3-numpy instead of python-numpy.

For python 2.7 ONLY

You will also need the future package. Run pip install future to install them. Python 2.6 has NOT been tested and probably won’t work.

Windows

It is much easier to install matplotlib in windows using the binary installer rather than using pip. You can download this [here](http://matplotlib.org/downloads.html). Pick the appropriate file for your python version e.g. ‘matplotlib-1.4.3.win32-py3.4.exe’ for python 3.4.

pandas should install ok with the pip installer. In windows pip.exe is located under C:Python34Scripts. The future package is needed for python 2.7.

Note that the Python pydata stack can also be installed at once using miniconda, http://conda.pydata.org/miniconda.html. This includes a version of Python itself.

Mac OSX

There are multiple packaged installers for scientific Python, the best of which is probably anaconda. Miniconda is a smaller version if you don’t want all the packages. To use it download and run the Mac OS X installer from http://conda.pydata.org/miniconda.html. The installer will automatically configure your system to use the Anaconda Python. You can then use pip to install the package.

If using macports:

sudo port install py34-pip
sudo pip-3.4 install matplotlib numpy pandas numexpr

Using the source distribution file

You can download the latest tar.gz file [here](https://github.com/dmnfarrell/pandastable/releases/latest/) and do the following:

tar -xzvf pandastable.version.tar.gz
cd pandastable
sudo python3 setup.py install

Note that you still need to have installed the dependencies as above.

Using DataExplore

This page details some of the tasks available in dataexplore. For a general introduction also see the screencast at https://youtu.be/Ss0QIFywt74.
Most of this functionality is available when you just use the table widget as well as the dataexplore application. Installing in windows or with a snap in linux should provide a menu item to launch the app. Otherwise use the command line, detailed below.

Purpose of the program

This program is for analyzing tabular data but is not meant to be a spreadsheet. Data is treated in a row/column centric fashion and a lot of the analysis is done in bulk on entire columns at once. So although you can edit cells it is not really meant for data entry. You can use a spreadsheet for that. Cell formulas are not possible for instance. You can however delete rows, columns and clear blocks of cells. New columns can be created through the use of functions. The primary goal is to let users explore their tables interactively without any prior programming knowledge and make interesting plots as they do this. One advantage is the ability to load and work with relatively large tables as compared to spreadsheets. So several million rows should not be a problem and is limited only by your computer memory.

Table layout

The table is laid out with headers for row and columns. Much functionality can be accessed from the tools menu but also but right clicking on the row and column headers. You can resize columns by dragging in the header. Rows cannot be resized independently (zoom in to enlarge). Unlike spreadsheets column and ro headers can use indexes. You can set any column as an index. This has extra functionality when it comes to plotting.

[image: _images/table_overview.png]

Command Line

Launching dataexplore from the command line allows you to provide several options using unix type ‘-’ switches.

Show help:

dataexplore -h

Open a project file:

dataexplore -p <project file>

Open a dataframe stored as a messagepack file:

dataexplore -f <msgpack file>

Open a csv file and try to import it:

dataexplore -i <csv file>

Launch a basic test table with no plot frame

dataexplore -t

Import text files

Import of csv and general plain text formats is done from the file menu, toolbar or by right-clicking anywhere in the table and using the context menu. The dialog has most basic options such as delimiter, header selection, comment symbol, rows to skip etc. When you change the import option you can update the preview to see if the new table will look correct. You then press import. Note that it is generally a good idea to remove empty lines and bad data if you can before importing.

Saving data

Dataexplore projects (multiple groups of sheets with the plot view for each) are saved in messagepack format and have the .dexpl file extension. Tables can also be saved on their own as messagepack or pickle files and then opened directly in Python. Using the messagepack format is more efficient than csv as it takes up less space and loads faster. Though quite reliable and efficient, it is not recommended that you use these formats for long term backup, always keep a copy your raw data if it is important. Exporting to csv is also possible and saving individual tables to excel.

Getting table info

The status bar at the bottom left shows the size of the table in rows and columns at all times. For a more detailed summary use Tools->Table info. This brings up a window showing the type of each column and memory usage. ‘object’ columns are those with text/mixed data and float and int must be numbers only.

[image: _images/table_info.png]

Cleaning data

Pandas supports a variety of options for data ‘cleaning’ or dealing with missing data. The most basic are available from DataExplore from the main menu.

	Drop rows/columns with missing (empty) data

	Fill missing data with a symbol

	Forward or backfill with neighbouring row values

	Interpolate missing data (filling in the points between)

	Drop duplicates

String operations

Accessed by right clicking on the column header menu. String operations can be carried out on any column as long as they are object data types and not pure numbers.

The following string methods are supported:

	split, with separator symbol - will create multiple new columns

	strip, remove whitespace

	lower/upper case conversion

	title, convert to TitleCase

	swap case

	get length of string

	concat, concatenate strings in first two cols with given separator

	slice, slice string by start/end indexes

	replace

Summarizing and grouping data

For overall table statistics you can use the tools->describe table command. For individual columns you can get value counts by right clicking on the header.

The primary way to summarize data is to use the aggregate dialog. It is accessed on the right toolbar. Tables can be grouped and aggregated on multiple columns to create new summary tables. The results will be placed in the sub table below the main one and can then be copied to new sheets. Normally you would group by category columns (rather then a continuous variable like decimal numbers). The dialog has a list of columns to group by and another list box for column(s) to aggregate these groups using one or more functions. See the animated example (click to enlarge):

[image: _images/agg_dialog_example.gif]
It is often easiest to test the selections out until you get the required result.

Merging two tables

Merging tables is done in dataexplore by first putting your second table in the sub-table below. You can do that by pasting it from another sheet or making an empty sub-table and importing. Once this is done you open the merge dialog in the toolbar. You select which columns in each table to merge on (at least one columns should be shared between each). The apply and the result is opened in the dialog to preview. You can copy this to a new sheet.

Pivoting tables

Pivot tables is an operation some people might be familiar with from excel. A pivot might best be described as way of summarizing data by ‘unstacking’ the grouped data into new columns. It is a more specialized version of the aggregation method above. A comprehensive explanation is given here: https://www.dataquest.io/blog/pandas-pivot-table/

Transpose tables

A transpose is rotating the table on its axes so the rows become columns and vice versa. This can be useful for plotting purposes when you want to treat the row data as series. This is illustrated in the animation below where the same table is plotted first with the years as series and then with ‘col1’ and ‘col2’ as series and years as data points. Your row index will become the new columns when you transpose, so you should make sure the correct index is set beforehand. If you make a mistake you can undo or transpose again to reverse. Note: transposing extremely large tables might be slow.

[image: _images/transpose_example.gif]

Filtering tables

Filtering tables is done using either a string query and/or one or more pre-defined filters defined with widgets.

Query with widgets

Pressing the filtering button will bring up the dialog below the table. Manual predefined filters can be added by pressing the + button. These are used alone or in conjunction with the string query as shown below. The filters are joined together using the first menu item using either ‘AND’, ‘OR’ or ‘NOT’ boolean logic. When filtered results are found the found rows are highlighted. You can also limit the table to show the filtered set which can be treated as usual (i.e. plots made etc). Closing the query box restores the full table. If you want to keep the filtered table you can copy and paste in another sheet.

String query

String based query are made up fairly intuitive expressions. The one caveat is that column names cannot contain spaces to be used in an expression. It is best in these cases to convert column names (i.e. replace spaces with an underscore ‘_’). You may also use Python/pandas style expressions to perform filters, useful with string based queries.

Examples:

x>4 and y<3 #filter by values of columns x and y
x.str.contains("abc") #find only values of column x containing substring #abc
x.str.len()>3 #find only rows where length of strings in x is greater than 3

[image: _images/filtering_example.gif]

Applying functions

Unlike a spreadsheet there are no cell based formulas. Rather functions are applied to columns over all rows, creating a new column. New columns can be created in several ways through computations on other columns. The column header menu provides some of these like resample/transform a column or the apply function dialog. Another more general way to add functions is to use the calculation button on the toolbar. This brings up a dialog below the table where you can type function as text expressions.

The same as for filtering, a string is entered like a formula and if it can be parsed a new column is created. For example entering ‘x = a + b’ will create a new column x that is the sum of a and b.

Examples:

x = a+b #sum a and b
x = a*a #a squared
x = sin(a)
x = sqrt(a+b)/log(c)

Supported functions in expressions: sin, cos, tan, arcsin, arccos, arctan, sinh, cosh, tanh, log, log10, exp

Converting column names

It may sometimes be necessary to re-format column names, for example to remove unwanted characters. If you have dozens or more columns this would be time consuming, so there is a function in dataexplore to do this in one step. Accessed from Tools->Convert column names, this dialog allows you to replace characters e.g. replace spaces with ‘_’ symbol. You can also convert cases.

Resampling columns

Resampling is a way to average data over specific windows or periods. It is a possible way to smooth out noisy data for example or get an average trend. You can resample columns from the column header menu. In the example below this is used to smooth out the sawtooth shaped C02 data. The larger the window the more averaging will take place.

[image: _images/resample_example.gif]

Plot options

The plot frame has an options dialog underneath with multiple tabs grouped by functionality. Most default formatting options such as the type of plot, whether to show a legend etc. are in the first tab. The dialogs may look a bit cluttered for some users but the idea is to have all available options quickly accessible rather than hidden in menus. If you use the program regularly you will be familiar with where things are. Some of the less obvious options are explained in the image below.

[image: _images/plot_options.png]
The following plot types are currently supported:

	line

	scatter

	bar

	barh

	pie

	histogram

	box plot

	dot plot

	heatmap

	area

	hexbin

	contour

	scatter matrix

	venn

Other tabs contain options for grid layouts, text annotation such as titles and text boxes, and access to the plot animation settings.

Plotting grouped data

Rather than grouping the table directly it is also possible to plot data grouped. This requires you select the appropriate columns including the one to be grouped by and select the grouping column in the ‘groupby’ menu in the plot options. Plots can be grouped by 2 columns at once.

Plotting in a grid

The gif animation below shows how to use the grid layout tool to generate subplots by clicking and dragging in the grid to select the area for your next plot. Note that subplots will be overwritten if you select the same cell as one currently occupied but if you drag over this cell the region will be plotted over. The tool assumes the user will know how to avoid overlaps. So it’s best to have a good idea of how to layout the plots beforehand, or just use trial and error. You can remove subplots from the drop down menu, listed according to their positions.

[image: _images/grid_layout_example.gif]
Grid layout includes other modes ‘split data and ‘multiview’. Split data lets you pick a grid size and splits up the rows into chunks, plotting each separately. The multiview mode allows you to auto-generate different kinds of plot in the grid for the same data every time you plot. This could be useful for quickly previewing regions of data repeatedly without having to set the plot type each time. This will overwrite whatever plot you currently have displayed. The feature is also illustrated in the gif above.

Animated plots

Plots can be animated and save as video files using the plot animation options tab. This would mostly be useful for time series based line plots but any kinds of plots can be animated. Formatting can be changed or column selections altered as the plot is updating, leading to some odd plot displays.

see http://dmnfarrell.github.io/dataexplore/2018/05/15/animation

Table Coloring

Column colors can be set by right clicking in the column header and choosing ‘set color’. A color picker will open. The formatting is saved with the project file. You can clear the formatting from the table popup menu.

You can set row and cell colors in several ways. Firstly, if right clicking on the row header or inside the table the ‘set color’ option lets you color the selected rows/columns with a single color. You can also set colors for the entire table/column according to the cell values. This is done by choosing ‘color by value’ from the column header and will allow you to select a color map. String values will be mapped to categorical integers and then to colors. See below:

[image: _images/table_colors.png]
For very large tables, adding colors for all cells will increases the file size of saved projects.

Setting preferences

Preferences for table formatting can be set from the edit->preferences menu item. This uses a text configuration file stored in ~/.dataexplore/default.conf. The preferences dialog is used to apply the settings to the current table and/or save them to this file. This file can be edited manually in a text editor if you wish. Any new tables will use these settings. The file looks like this:

[base]
align = w
cellwidth = 80
floatprecision = 2
font = Arial
fontsize = 12
linewidth = 1
rowheight = 22

[colors]
cellbackgr = #F4F4F3
grid_color = #ABB1AD
rowselectedcolor = #E4DED4
textcolor = black

Batch processing

A plugin provides the ability to batch import and/or plot multiple files at once. This is generally designed for many similarly formatted files that you wish to clean or plot in bulk without loading each individually. You can also use this to join many files into one table. Access this tool from Plugins->Batch Process.

Other examples

Other guides are available as blog posts:

	http://dmnfarrell.github.io/dataexplore/titanic-example

	http://dmnfarrell.github.io/dataexplore/grouped-plots

	http://dmnfarrell.github.io/dataexplore/sea-ice-example

Code Examples

This section is for python programmers you want to use the table widget in their own programs.

Basics

Create a parent frame and then add the table to it:

from tkinter import *
from pandastable import Table
#assuming parent is the frame in which you want to place the table
pt = Table(parent)
pt.show()

Update the table:

#alter the DataFrame in some way, then update
pt.redraw()

Import a csv file:

pt.importCSV('test.csv')

A class for launching a basic table in a frame:

from tkinter import *
from pandastable import Table, TableModel, config

class TestApp(Frame):
 """Basic test frame for the table"""
 def __init__(self, parent=None):
 self.parent = parent
 Frame.__init__(self)
 self.main = self.master
 self.main.geometry('600x400+200+100')
 self.main.title('Table app')
 f = Frame(self.main)
 f.pack(fill=BOTH,expand=1)
 df = TableModel.getSampleData()
 self.table = pt = Table(f, dataframe=df,
 showtoolbar=True, showstatusbar=True)
 pt.show()
 #set some options
 options = {'colheadercolor':'green','floatprecision': 5}
 config.apply_options(options, pt)
 pt.show()
 return

app = TestApp()
#launch the app
app.mainloop()

Sub-class the Table

Override the right click popup menu:

class MyTable(Table):
 """Custom table class inherits from Table. You can then override required methods"""
 def __init__(self, parent=None, **kwargs):
 Table.__init__(self, parent, **kwargs)
 return

 def handle_left_click(self, event):
 """Example - override left click"""

 Table.handle_left_click(self, event)
 #do custom code here
 return

 def popupMenu(self, event, rows=None, cols=None, outside=None):
 """Custom right click menu"""

 popupmenu = Menu(self, tearoff = 0)
 def popupFocusOut(event):
 popupmenu.unpost()
 # add commands here
 # self.app is a reference to the parent app
 popupmenu.add_command(label='do stuff', command=self.app.stuff)
 popupmenu.bind("<FocusOut>", popupFocusOut)
 popupmenu.focus_set()
 popupmenu.post(event.x_root, event.y_root)
 return popupmenu

Table methods

You can use the Table class methods to directly access data and perform many more functions. Check the API for all the methods. Some examples are given here:

#add 10 empty columns
table.autoAddColumns(10)
#resize the columns to fit the data better
table.autoResizeColumns()
#clear the current formatting
table.clearFormatting()
#reduce column witdths proportionally
table.contractColumns()
#get selected column
table.getSelectedColumn()
#sort by column index 0
table.sortTable(0)
#enlarge all table elements
table.zoomIn()
#set row colors
table.setRowColors(rows=range(2,100,2), clr='lightblue', cols='all')
#delete selected rows
table.setSelectedRows([[4,6,8,10]])
#delete current row
table.deleteRow()
#set current row
table.setSelectedRow(10)
#insert below current row
table.insertRow()

Accessing and modifying data directly

The tables use a pandas DataFrame object for storing the underlying data. If you are not familiar with pandas you should learn the basics if you need to access or manipulate the table data. See http://pandas.pydata.org/pandas-docs/stable/10min.html

Each table has an object called model with has the dataframe inside it. The dataframe is referred to as df. So to access the data on a table you can use:

df = table.model.df

Examples of simple dataframe operations. Remember when you update the dataframe you will need to call table.redraw() to see the changes reflected:

df.drop(0) #delete column with this index
df.T #transpose the DataFrame
df.drop(columns=['x'])

Set table attributes

You can set table attributes directly such as these examples:

 table.textcolor = 'blue'
 table.cellbackgr = 'white'
 table.boxoutlinecolor = 'black'
 #set header colors
 self.table.rowheader.bgcolor = 'orange'
 self.table.colheader.bgcolor = 'lightgreen'
 self.table.colheader.textcolor = 'black'
 #make editable or not
table.editable = False

Set Preferences

Preferences are normally loaded from a configuration file that can be edited manually or via the menu. You can also programmatically set these preferences using the config module:

#load from a config file if you need to (done by default when tables are created)
options = config.load_options()
#options is a dict that you can set yourself
options = {'floatprecision': 2}
config.apply_options(options, table)

You can set the following configuration values:

{'align': 'w',
 'cellbackgr': '#F4F4F3',
 'cellwidth': 80,
 'floatprecision': 2,
 'thousandseparator': '',
 'font': 'Arial',
 'fontsize': 12,
 'fontstyle': '',
 'grid_color': '#ABB1AD',
 'linewidth': 1,
 'rowheight': 22,
 'rowselectedcolor': '#E4DED4',
 'textcolor': 'black'}

Table Coloring

You can set column colors by setting the key in the columncolors dict to a valid hex color code. Then just redraw:

table.columncolors['mycol'] = '#dcf1fc' #color a specific column
table.redraw()

You can set row and cell colors in several ways. table.rowcolors is a pandas dataframe that mirrors the current table and stores a color for each cell. It only adds columns as needed. You can update this manually but it is easiest to use the following methods:

table.setRowColors(rows, color) #using row numbers
table.setColorByMask(column, mask, color) #using a pre-defined mask
table.redraw()

To color by column values:

table.multiplecollist = [cols] #set the selected columns
table.setColorbyValue()
table.redraw()

To clear formatting:

table.clearFormatting()
table.redraw()

Note: You should generally use a simple integer index for the table when using colors as there may be inconsistencies otherwise.

Writing DataExplore Plugins

Plugins are for adding custom functionality that is not present in the main application. They are implemented by sub-classing the Plugin class in the plugin module. This is a python script that can generally contain any code you wish. Usually the idea will be to implement a dialog that the user interacts with. But this could also be a single method that runs on the current table or all sheets at once.

Implementing a plugin

Plugins should inherit from the Plugin class. Though this is not strictly necessary for the plugin to function.

from pandastable.plugin import Plugin

You can simply copy the example plugin to get started. All plugins need to have a main() method which is called by the application to launch them. By default this method contains the _doFrame() method which constructs a main frame as part of the current table frame. Usually you override main() and call _doFrame then add your own custom code with your widgets.

_doFrame method has the following lines which are always needed unless it is a non GUI plugin:

self.table = self.parent.getCurrentTable() #get the current table
#add the plugin frame to the table parent
self.mainwin = Frame(self.table.parentframe)
#pluginrow is 6 to make the frame appear below other widgets
self.mainwin.grid(row=pluginrow,column=0,columnspan=2,sticky='news')

You can also override the quit() and about() methods.

Non-table based plugins

Plugins that don’t rely on using the table directly do not need to use the above method and can have essentially anything in them as long as there is a main() method present. The Batch File Rename plugin is an example. This is a standalone utility launched in a separate toplevel window.

see https://github.com/dmnfarrell/pandastable/blob/master/pandastable/plugins/rename.py

Freezing the app

Dataexplore is available as an exe with msi installer for Windows. This was created using the cx_freeze package. For anyone wishing to freeze their tkinter app some details are given here. This is a rather hit and miss process as it seems to depend on your installed version of Python. Even when the msi/exe builds you need to check for runtime issues on another copy of windows to make sure it’s working.
Steps:

	Use a recent version of python (>=3.6 recommended) installed as normal and then using pip to install the dependencies that you normally need to run the app.

	The freeze script is found in the main pandastable folder, freeze.py. You can adopt it for your own app.

	Run the script using python freeze.py bdist_msi

	The resulting msi is placed in the dist folder. This is a 32 bit binary but should run fine on windows 10.

You can probably use Anaconda to do the same thing but we have not tested this.

pandastable

	pandastable package
	Submodules

	pandastable.annotation module

	pandastable.app module

	pandastable.core module

	pandastable.data module

	pandastable.dialogs module

	pandastable.handlers module

	pandastable.headers module

	pandastable.images module

	pandastable.plotting module

	pandastable.plugin module

	pandastable.config module

	pandastable.stats module

	pandastable.tests module

	pandastable.util module

	Module contents

pandastable package

Submodules

pandastable.annotation module

pandastable.app module

pandastable.core module

pandastable.data module

pandastable.dialogs module

pandastable.handlers module

pandastable.headers module

pandastable.images module

pandastable.plotting module

pandastable.plugin module

pandastable.config module

pandastable.stats module

pandastable.tests module

pandastable.util module

Module contents

Index

 _images/table_colors.png
Jolass_____[sepal leng|sepal widt [petal lengt|petal width] _|
[Vignica 69 Bdwsswb51 23 |

virginica
versicolor
virginica
versicolor
versicolor
virginica
virginica
virginica
virginica
virginica
versicolor
versicolor
versicolor
virginica
versicolor
virginica
virginica
virginica
virginica
virginica
virginica
virginica

versicolor 4 2o 13

6.8
6.8
6.8
67
67
67
67
67
67
67
6.7
66
66
65
65
65
65
65
64
64
64
64

_images/table_info.png
class ‘pandas. core. frame.DataFrane
Int64Index: 1309 entries, © to 1308
Data columns (total 13 columns)
pclass 1309 non-null inte4
survived 1309 non-null int64
sex 1369 non-null object
age 1046 non-null floats4
sibsp 1309 non-null inte4
parch 1309 non-null int64
ticket 1309 non-null object
fare 1308 non-null floatsd
cabin 295 non-null object
embarked 1307 non-null object
body 121 non-null floated
boat 486 non-null object
name 1309 non-null object
dtypes: float64(3), int64(4), object(s
memory usage: 143.2+ KB
iz

_images/plot_options.png
group plots by a resolution (dpi) of color points by a

categorical column saved plots column values
4 Plot ‘ 2, Apply Options | sl ‘ x ‘ | ‘ = ‘save dpi: 80 [use grid layout
Base Options | Annotation | Grid Lhyout | Other Options | 3D Plot| Animate |
select pIOt type ~general —data axes- sizes formats colors-
\ plot type pins |m x tick labels| font size font | colormap
line] |20 \/ |m y tick labels| 12 manospace)| Spectral =
split grouped [stacked group by - sharex |MLd markes | black & white
plOtS in —> r:]ultiplel:ubplots . I sharey m;rker size — = 1 color by value |
NI m 2 I f I
individual plots e SRRy il L : - =
w legend I lo » 5 I color scale
) o\ line width alpha ;
W use index label column xlabel angle | 1.5 0.9 |linear |
/ [errorbar column label <o | I _|_[7|" show colorbar
use the table - . ‘
index as the x-axis
add labels to transparency of
scatter points from plot elements

a column

_images/resample_example.gif
sheetl | co2-ppm-mauna-ioa |

I T e
1965-01 |319.32

1965-62] 320.36

1965-03 | 320.82

1965-04 |322.06

1965-05 |322.17

1965-05 |321.95

1965-07 |321.2

1965-08 | 318.81

1965-09 |317.82

196510 |317.37

11 19511 31893

12 19512 |319.09

13 19601 |319.94

14 19602 |320.98 N

15 1966-03 321.81
16 1966-04 | 323.63
17 1966-05 | 323.36
18 1966-05 | 323.11
19 1966-07 | 321.65
20 1966-08 319.64
21 1966-09 | 317.86
22 1966-10 |317.25
23 1966-11 319.06
24 1966-12 |320.26

25 1967-01 321.65
P e 5]

192 rows x2 columns oo

O EE RN R EEEEE

=l

_images/table_overview.png
Row header menu
(right click)

Sort by index
Reset index

Toggle index
Rename index

Sort columns by row
Copy index to column
Add Rowls)

Delete Row(s)
Duplicate Rowls)

et Row Color

sheet1 | tips

4.08

7 1577 22
244 1ows x7 columns

Female
Male
rale
Male
Fenale
rale
Male
Male
rale
Male
Male
Female
Male
Male
Female
Male
Female
Male
Female
Male
rale
Fenale
Female

$33%335888388%853883333%

3

Column header
menu (right click)

L #| Open table
ey St brime L Savetable
Dmer g = | |91 Exportto csv
Dinner Format 1 = Export to excel
Dtaner_Fil wih Data S Copy to clipboard
Dinner _ Create Categorical 8 Paste
Dinner Apply Function ;
Dinner Resample/Transform | Plotselected
[Dlnner Value Counts & Transpose

" String Operation >
DL otertime Conversion Group/aggregate
Dtnner 3 2 Ppivot
]S £ Met
Dioner) #| Merge tables
Dimner |2 1| New sub-table
Dinner |2 Ll Filter table
pinecll 2 Create functions
Dinner 3
Dinner 3
Dinner |3 Clear table
Dinner 2
Dinner 2
nimer 2 =

o]0

Zoom buttons

_images/transpose_example.gif
| udex oo ooz Joors Jo | i

B [cotx

- o2

5.001
2.239

6.046
5.051

5.264
4.447

5.69
6.282

2rows x5 columns

oo

D EE RN R E =

2 Apply Options save dpi: 80 use grid layout
=4 Plot 2 Apply Optic X |0 dj r id I
Base Options | Annotation | Grid Layout | Other Options | 3D Plot |
~general dats axe: size: forma olor
plot type x tick labels| font size font colormap
bar o m y tick labels 21 monospace lspectral
™ stacked group by I share x TR marker - plack & white
marker size g
I multple subplots = sharey = nesiyie color by value
groupby2 |-

[show grid oo — . = colorscale
™ legend . | legy. line width alpha

e ==lindes xiabelangle | 15 09 |linear
I~ show table [errorbar column |0 I~ show colorbar

_static/file.png

_static/logo.png

_images/agg_dialog_example.gif
sheetl | titanic3 |

e

B

female
nale
female
nale
female
nale
female
nale
female
nale
nale
female
female
female
nale
nale
nale
female
female
nale
nale
female
nale
female
female
nale

29.0

0.9167

2.0
3.1
2.1
8.
63..
39..
53..
71
a1,
18..
2,

2.
80..

2.
5.
32.
36..
37.
a1,
2.
a2,
29.1
2.1

BEEEOEEEEEEEEEERERERERRRRE

BEEEOEEEEREEEEEEEEEEERRRRE

24160
113781
113781
113781
113781
19952
13502
112050
11769
PC 17609
PC 17757
PC 17757
PC 17477
19877
27042
PC 17318
PC 17558
PC 17558
11813
13050
11751
11751
111369
PC 17757
PC 17483
13905

211.3375
151.55
151.55
151.55
151.55
26.55
77.9583
0.0
51.4792
49,5042
227.525
227.525
69.3
78.85
30.0
25.925
247.5208
247.5208
76.2917
75.2417
52.5542
52.5542
30.0
227.525
221.7792
2.0

85
22 26
22 26
22 26
22 26
E12

07

A36
cl01

C62 Co4
C62 Co4
B35

a3

B58 B6O
B58 B6O
D15

[<:

035
035
148

o7

D E R RN R EEEEE

5]

[T

1309 rows x 13 columns

=]

i

Base Options |
general
plot type

line
I stacked

[multiple subf
I show grid

™ legend

I show table

_images/filtering_example.gif
17
18
19
20
21
22
23
24
25
26
27
28
20
30
31

1000 rows x 7 columns

—
5848 (6667 (3687 679 5747 |high 2016-01-01 16:00:00

10026 |s0s3 218 (7608 6477 |nigh 2016.01-01 17:00:00 2l
o4z sse 283 7700 7608 |mgn 2016.01-01 18:00:00]
f0246 o761 1503 6620 7020 |veryhgh |2016-:01-0119:00:00 =
8752 834 3565 7708 625 |mign 2016-01-01 20:00:00 =
7475 5585 3130 9591 6494 mecum 2016-01-0121:0000 =l
9543 1001 2157 6104 585 |mign 2016.01-01 22:00:00

9620 5703 2885 770 6798 |mign 2016.01-01 23:00:00

8225 7200 3424 7435 753 medum | 2016-01-02 00:0000

48t soss 2418 cses 7016 mgn 2016.01-02 01:00:00

6224 5172 2456 7269 7331 liow 2016-01-02 02:00:00

7168 o162 0183 7678 8713 medum 2016-01-0203:0000

10708 (7749 3228 (8675 699 |veryhgh |2016-01-0204:00:00

8902 6467 3sa1 s1o1 7655 |mgn 2016-01-02 05:00:00

7185 ses 2073 7448 medium

7.535

2016-01-02 06:00:00

_images/grid_layout_example.gif
B TN T

5.76
5.544
5.06

6.742
6.386
5.041
5.202
6.214
5.724
6.08

7.514
6.364
6.523
6.146
4.88

4.621
7.219
5.521
6.367
7.011
6.446
6.678
6.369
5.053
6.239
5.726
5317
5.126
7.628
7.507
7.937
7.866
5.918
7.947

very high
high
high
medium
high
medium
high
low.
medium
medium
medium
high
high
medium
medium
low.
medium
medium
medium
high
high
medium
medium
medium
low.
low.
medium
high
medium
medium
high
low.
high
high

20]
20/
20/
20/
20/
20/
20/
20/
20/
20/
20/
20/
20/
20/
20/
20/
20/
20/
20/
20/
20/
20/
20/
20/
20/
20/
20/
20/
20/
20]
20]
20]

0]

Base Options | Annotation | Grid Layout | Other Options | 3D Plot |

=

& 10

(=] —

Bl .

E 8 — sl

®

oy

8|

>

2]

€|

»

2 2

El

”|

T b
13 3 1 5 % 5 E)
£ Plot | 2, Apply Options || ¢ | 11| B save dpiifs0 1~ use grid layout

dat: axe size: format: olor
bins M x tick labels| font size font colormap
J2o wy tick labels| 12 monospace <l spectral J
group by ™ share x — metkeq ™ black & white
I multiple subplots < sharey | markersie T Vi
) goupby2 | i
I show grid JE e e
= legend H use index ooy fine width o linear
xiabelangle | 15 09 =l
I~ show table: ermorbar colimn 0 ¢ 17| show colorbar

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to pandastable documentation.

 		
 Introduction

 		
 Current Features

 		
 The DataExplore application

 		
 Links

 		
 Citation

 		
 Installation

 		
 For Dataexplore

 		
 pandastable library

 		
 Linux

 		
 Windows

 		
 Mac OSX

 		
 Using DataExplore

 		
 Purpose of the program

 		
 Table layout

 		
 Command Line

 		
 Import text files

 		
 Saving data

 		
 Getting table info

 		
 Cleaning data

 		
 String operations

 		
 Summarizing and grouping data

 		
 Merging two tables

 		
 Pivoting tables

 		
 Transpose tables

 		
 Filtering tables

 		
 Query with widgets

 		
 String query

 		
 Applying functions

 		
 Converting column names

 		
 Resampling columns

 		
 Plot options

 		
 Plotting grouped data

 		
 Plotting in a grid

 		
 Animated plots

 		
 Table Coloring

 		
 Setting preferences

 		
 Batch processing

 		
 Other examples

 		
 Code Examples

 		
 Basics

 		
 Sub-class the Table

 		
 Table methods

 		
 Accessing and modifying data directly

 		
 Set table attributes

 		
 Set Preferences

 		
 Table Coloring

 		
 Writing DataExplore Plugins

 		
 Implementing a plugin

 		
 Non-table based plugins

 		
 Freezing the app

 		
 pandastable

 		
 pandastable package

 		
 Submodules

 		
 pandastable.annotation module

 		
 pandastable.app module

 		
 pandastable.core module

 		
 pandastable.data module

 		
 pandastable.dialogs module

 		
 pandastable.handlers module

 		
 pandastable.headers module

 		
 pandastable.images module

 		
 pandastable.plotting module

 		
 pandastable.plugin module

 		
 pandastable.config module

 		
 pandastable.stats module

 		
 pandastable.tests module

 		
 pandastable.util module

 		
 Module contents

_static/plus.png

