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Introduction

The pandastable library provides a table widget for Tkinter with
plotting and data manipulation functionality. It uses the pandas
DataFrame class to store table data. Pandas is an open source Python
library providing high-performance data structures and data analysis
tools. Tkinter is the standard GUI toolkit for python. It is intended
for the following uses:


	for python/tkinter GUI developers who want to include a table in
their application that can store and process large amounts of data


	for non-programmers who are not familiar with Python or the pandas
API and want to use the included DataExplore application to
manipulate/view their data


	it may also be useful for data analysts and programmers who want to
get an initial interactive look at their tabular data without coding






Current Features


	add, remove rows and columns


	spreadsheet-like drag, shift-click, ctrl-click selection


	edit individual cells


	sort by column, rename columns


	reorder columns dynamically by mouse drags


	set some basic formatting such as font, text size and column width


	save the DataFrame to supported pandas formats


	import/export of supported text files


	rendering of very large tables is only memory limited


	interactive plots with matplotlib, mostly using the pandas plot functions


	basic table manipulations like aggregate and pivot


	filter table using built in dataframe functionality


	graphical way to perform split-apply-combine operations






The DataExplore application

Installing the package creates a command dataexplore in your path. Just run this to open the program. This is a standalone application for data manipulation and plotting meant for education and basic data analysis. More details are in the ‘Using dataexplore’ section. Also see the home page for this application at http://dmnfarrell.github.io/pandastable/



Links

http://openresearchsoftware.metajnl.com/articles/10.5334/jors.94/

http://dmnfarrell.github.io/pandastable/

https://youtu.be/Ss0QIFywt74



Citation

If you use this software in your work please cite the following article:

Farrell, D 2016 DataExplore: An Application for General Data Analysis in Research and Education. Journal of Open Research Software, 4: e9, DOI: http://dx.doi.org/10.5334/jors.94



Installation


For Dataexplore

For Windows users there is an MSI installer for the DataExplore application. This is recommended for anyone using windows not using the library directly as a widget.

On linux snaps are highly recommended:

snap install dataexplore







pandastable library

On all operating systems installations of Python should include the pip tool. If not use your distributions package manager to install pip first. Then a simple call as follows should install all dependencies:

pip install pandastable





This might not work well in some cases because matplotlib has library dependencies that users might find confusing. Though it should work ok on recent versions of Ubuntu. Advice for each OS is given below.

Dependencies


	numpy


	pandas


	matplotlib


	numexpr




Optional dependencies


	statsmodels


	seaborn (requires scipy)






Linux

For the python linbrary using easy_install or pip should work well but for matplotlib might require more packages such as python headers for compiling the extension. You need the tk8.6-dev package to provide the tkagg backend.

Otherwise, to use the package manager in Ubuntu/Debian based distributions you can issue the command:

sudo apt install python-matplotlib





You should install pandas with pip as it will provide the most recent version. This will likely be done automatically anyway:

For python 3 installs

You need to use the command pip3 instead if python 2 is also on your system, like in Ubuntu. When installing packages with apt you likely need to specify python 3. e.g. python3-numpy instead of python-numpy.

For python 2.7 ONLY

You will also need the future package. Run pip install future to install them. Python 2.6 has NOT been tested and probably won’t work.



Windows

It is much easier to install matplotlib in windows using the binary installer rather than using pip. You can download this [here](http://matplotlib.org/downloads.html). Pick the appropriate file for your python version  e.g. ‘matplotlib-1.4.3.win32-py3.4.exe’ for python 3.4.

pandas should install ok with the pip installer. In windows pip.exe is located under C:Python34Scripts. The future package is needed for python 2.7.

Note that the Python pydata stack can also be installed at once using miniconda, http://conda.pydata.org/miniconda.html. This includes a version of Python itself.



Mac OSX

There are multiple packaged installers for scientific Python, the best of which is probably anaconda. Miniconda is a smaller version if you don’t want all the packages. To use it download and run the Mac OS X installer from http://conda.pydata.org/miniconda.html. The installer will automatically configure your system to use the Anaconda Python. You can then use pip to install the package.

If using macports:

sudo port install py34-pip
sudo pip-3.4 install matplotlib numpy pandas numexpr





Using the source distribution file

You can download the latest tar.gz file [here](https://github.com/dmnfarrell/pandastable/releases/latest/) and do the following:

tar -xzvf pandastable.version.tar.gz
cd pandastable
sudo python3 setup.py install





Note that you still need to have installed the dependencies as above.





            

          

      

      

    

  

    
      
          
            
  
Using DataExplore

This page details some of the tasks available in dataexplore. For a general introduction also see the screencast at https://youtu.be/Ss0QIFywt74.
Most of this functionality is available when you just use the table widget as well as the dataexplore application. Installing in windows or with a snap in linux should provide a menu item to launch the app. Otherwise use the command line, detailed below.


Purpose of the program

This program is for analyzing tabular data but is not meant to be a spreadsheet. Data is treated in a row/column centric fashion and a lot of the analysis is done in bulk on entire columns at once. So although you can edit cells it is not really meant for data entry. You can use a spreadsheet for that. Cell formulas are not possible for instance. You can however delete rows, columns and clear blocks of cells. New columns can be created through the use of functions. The primary goal is to let users explore their tables interactively without any prior programming knowledge and make interesting plots as they do this. One advantage is the ability to load and work with relatively large tables as compared to spreadsheets. So several million rows should not be a problem and is limited only by your computer memory.



Table layout

The table is laid out with headers for row and columns. Much functionality can be accessed from the tools menu but also but right clicking on the row and column headers. You can resize columns by dragging in the header. Rows cannot be resized independently (zoom in to enlarge). Unlike spreadsheets column and ro headers can use indexes. You can set any column as an index. This has extra functionality when it comes to plotting.

[image: _images/table_overview.png]


Command Line

Launching dataexplore from the command line allows you to provide several options using unix type ‘-’ switches.

Show help:

dataexplore -h

Open a project file:

dataexplore -p <project file>

Open a dataframe stored as a messagepack file:

dataexplore -f <msgpack file>

Open a csv file and try to import it:

dataexplore -i <csv file>

Launch a basic test table with no plot frame

dataexplore -t



Import text files

Import of csv and general plain text formats is done from the file menu, toolbar or by right-clicking anywhere in the table and using the context menu. The dialog has most basic options such as delimiter, header selection, comment symbol, rows to skip etc. When you change the import option you can update the preview to see if the new table will look correct. You then press import. Note that it is generally a good idea to remove empty lines and bad data if you can before importing.



Saving data

Dataexplore projects (multiple groups of sheets with the plot view for each) are saved in messagepack format and have the .dexpl file extension. Tables can also be saved on their own as messagepack or pickle files and then opened directly in Python. Using the messagepack format is more efficient than csv as it takes up less space and loads faster. Though quite reliable and efficient, it is not recommended that you use these formats for long term backup, always keep a copy your raw data if it is important. Exporting to csv is also possible and saving individual tables to excel.



Getting table info

The status bar at the bottom left shows the size of the table in rows and columns at all times. For a more detailed summary use Tools->Table info. This brings up a window showing the type of each column and memory usage. ‘object’ columns are those with text/mixed data and float and int must be numbers only.

[image: _images/table_info.png]


Cleaning data

Pandas supports a variety of options for data ‘cleaning’ or dealing with missing data. The most basic are available from DataExplore from the main menu.


	Drop rows/columns with missing (empty) data


	Fill missing data with a symbol


	Forward or backfill with neighbouring row values


	Interpolate missing data (filling in the points between)


	Drop duplicates






String operations

Accessed by right clicking on the column header menu. String operations can be carried out on any column as long as they are object data types and not pure numbers.

The following string methods are supported:


	split, with separator symbol - will create multiple new columns


	strip, remove whitespace


	lower/upper case conversion


	title, convert to TitleCase


	swap case


	get length of string


	concat, concatenate strings in first two cols with given separator


	slice, slice string by start/end indexes


	replace






Summarizing and grouping data

For overall table statistics you can use the tools->describe table command. For individual columns you can get value counts by right clicking on the header.

The primary way to summarize data is to use the aggregate dialog. It is accessed on the right toolbar. Tables can be grouped and aggregated on multiple columns to create new summary tables. The results will be placed in the sub table below the main one and can then be copied to new sheets. Normally you would group by category columns (rather then a continuous variable like decimal numbers). The dialog has a list of columns to group by and another list box for column(s) to aggregate these groups using one or more functions. See the animated example (click to enlarge):

[image: _images/agg_dialog_example.gif]
It is often easiest to test the selections out until you get the required result.



Merging two tables

Merging tables is done in dataexplore by first putting your second table in the sub-table below. You can do that by pasting it from another sheet or making an empty sub-table and importing. Once this is done you open the merge dialog in the toolbar. You select which columns in each table to merge on (at least one columns should be shared between each). The apply and the result is opened in the dialog to preview. You can copy this to a new sheet.



Pivoting tables

Pivot tables is an operation some people might be familiar with from excel. A pivot might best be described as way of summarizing data by ‘unstacking’ the grouped data into new columns. It is a more specialized version of the aggregation method above. A comprehensive explanation is given here: https://www.dataquest.io/blog/pandas-pivot-table/



Transpose tables

A transpose is rotating the table on its axes so the rows become columns and vice versa. This can be useful for plotting purposes when you want to treat the row data as series. This is illustrated in the animation below where the same table is plotted first with the years as series and then with ‘col1’ and ‘col2’ as series and years as data points. Your row index will become the new columns when you transpose, so you should make sure the correct index is set beforehand. If you make a mistake you can undo or transpose again to reverse. Note: transposing extremely large tables might be slow.

[image: _images/transpose_example.gif]


Filtering tables

Filtering tables is done using either a string query and/or one or more pre-defined filters defined with widgets.


Query with widgets

Pressing the filtering button will bring up the dialog below the table. Manual predefined filters can be added by pressing the + button. These are used alone or in conjunction with the string query as shown below. The filters are joined together using the first menu item using either ‘AND’, ‘OR’ or ‘NOT’ boolean logic. When filtered results are found the found rows are highlighted. You can also limit the table to show the filtered set which can be treated as usual (i.e. plots made etc). Closing the query box restores the full table. If you want to keep the filtered table you can copy and paste in another sheet.



String query

String based query are made up fairly intuitive expressions. The one caveat is that column names cannot contain spaces to be used in an expression. It is best in these cases to convert column names (i.e. replace spaces with an underscore ‘_’). You may also use Python/pandas style expressions to perform filters, useful with string based queries.

Examples:

x>4 and y<3 #filter by values of columns x and y
x.str.contains("abc") #find only values of column x containing substring #abc
x.str.len()>3 #find only rows where length of strings in x is greater than 3





[image: _images/filtering_example.gif]



Applying functions

Unlike a spreadsheet there are no cell based formulas. Rather functions are applied to columns over all rows, creating a new column. New columns can be created in several ways through computations on other columns. The column header menu provides some of these like resample/transform a column or the apply function dialog. Another more general way to add functions is to use the calculation button on the toolbar. This brings up a dialog below the table where you can type function as text expressions.

The same as for filtering, a string is entered like a formula and if it can be parsed a new column is created. For example entering ‘x = a + b’ will create a new column x that is the sum of a and b.

Examples:

x = a+b  #sum a and b
x = a*a  #a squared
x = sin(a)
x = sqrt(a+b)/log(c)





Supported functions in expressions:  sin, cos, tan, arcsin, arccos, arctan, sinh, cosh, tanh, log, log10, exp



Converting column names

It may sometimes be necessary to re-format column names, for example to remove unwanted characters. If you have dozens or more columns this would be time consuming, so there is a function in dataexplore to do this in one step. Accessed from Tools->Convert column names, this dialog allows you to replace characters e.g. replace spaces with ‘_’ symbol. You can also convert cases.



Resampling columns

Resampling is a way to average data over specific windows or periods. It is a possible way to smooth out noisy data for example or get an average trend. You can resample columns from the column header menu. In the example below this is used to smooth out the sawtooth shaped C02 data. The larger the window the more averaging will take place.

[image: _images/resample_example.gif]


Plot options

The plot frame has an options dialog underneath with multiple tabs grouped by functionality. Most default formatting options such as the type of plot, whether to show a legend etc. are in the first tab. The dialogs may look a bit cluttered for some users but the idea is to have all available options quickly accessible rather than hidden in menus. If you use the program regularly you will be familiar with where things are. Some of the less obvious options are explained in the image below.

[image: _images/plot_options.png]
The following plot types are currently supported:


	line


	scatter


	bar


	barh


	pie


	histogram


	box plot


	dot plot


	heatmap


	area


	hexbin


	contour


	scatter matrix


	venn




Other tabs contain options for grid layouts, text annotation such as titles and text boxes, and access to the plot animation settings.



Plotting grouped data

Rather than grouping the table directly it is also possible to plot data grouped. This requires you select the appropriate columns including the one to be grouped by and select the grouping column in the ‘groupby’ menu in the plot options. Plots can be grouped by 2 columns at once.



Plotting in a grid

The gif animation below shows how to use the grid layout tool to generate subplots by clicking and dragging in the grid to select the area for your next plot. Note that subplots will be overwritten if you select the same cell as one currently occupied but if you drag over this cell the region will be plotted over. The tool assumes the user will know how to avoid overlaps. So it’s best to have a good idea of how to layout the plots beforehand, or just use trial and error. You can remove subplots from the drop down menu, listed according to their positions.

[image: _images/grid_layout_example.gif]
Grid layout includes other modes ‘split data and ‘multiview’. Split data lets you pick a grid size and splits up the rows into chunks, plotting each separately. The multiview mode allows you to auto-generate different kinds of plot in the grid for the same data every time you plot. This could be useful for quickly previewing regions of data repeatedly without having to set the plot type each time. This will overwrite whatever plot you currently have displayed. The feature is also illustrated in the gif above.



Animated plots

Plots can be animated and save as video files using the plot animation options tab. This would mostly be useful for time series based line plots but any kinds of plots can be animated. Formatting can be changed or column selections altered as the plot is updating, leading to some odd plot displays.

see http://dmnfarrell.github.io/dataexplore/2018/05/15/animation



Table Coloring

Column colors can be set by right clicking in the column header and choosing ‘set color’. A color picker will open. The formatting is saved with the project file. You can clear the formatting from the table popup menu.

You can set row and cell colors in several ways. Firstly, if right clicking on the row header or inside the table the ‘set color’ option lets you color the selected rows/columns with a single color. You can also set colors for the entire table/column according to the cell values. This is done by choosing ‘color by value’ from the column header and will allow you to select a color map. String values will be mapped to categorical integers and then to colors. See below:

[image: _images/table_colors.png]
For very large tables, adding colors for all cells will increases the file size of saved projects.



Setting preferences

Preferences for table formatting can be set from the edit->preferences menu item. This uses a text configuration file stored in ~/.dataexplore/default.conf. The preferences dialog is used to apply the settings to the current table and/or save them to this file. This file can be edited manually in a text editor if you wish. Any new tables will use these settings. The file looks like this:

[base]
align = w
cellwidth = 80
floatprecision = 2
font = Arial
fontsize = 12
linewidth = 1
rowheight = 22

[colors]
cellbackgr = #F4F4F3
grid_color = #ABB1AD
rowselectedcolor = #E4DED4
textcolor = black







Batch processing

A plugin provides the ability to batch import and/or plot multiple files at once. This is generally designed for many similarly formatted files that you wish to clean or plot in bulk without loading each individually. You can also use this to join many files into one table. Access this tool from Plugins->Batch Process.



Other examples

Other guides are available as blog posts:


	http://dmnfarrell.github.io/dataexplore/titanic-example


	http://dmnfarrell.github.io/dataexplore/grouped-plots


	http://dmnfarrell.github.io/dataexplore/sea-ice-example








            

          

      

      

    

  

    
      
          
            
  
Code Examples

This section is for python programmers you want to use the table widget in their own programs.


Basics

Create a parent frame and then add the table to it:

from tkinter import *
from pandastable import Table
#assuming parent is the frame in which you want to place the table
pt = Table(parent)
pt.show()





Update the table:

#alter the DataFrame in some way, then update
pt.redraw()





Import a csv file:

pt.importCSV('test.csv')





A class for launching a basic table in a frame:

from tkinter import *
from pandastable import Table, TableModel, config

class TestApp(Frame):
        """Basic test frame for the table"""
        def __init__(self, parent=None):
            self.parent = parent
            Frame.__init__(self)
            self.main = self.master
            self.main.geometry('600x400+200+100')
            self.main.title('Table app')
            f = Frame(self.main)
            f.pack(fill=BOTH,expand=1)
            df = TableModel.getSampleData()
            self.table = pt = Table(f, dataframe=df,
                                    showtoolbar=True, showstatusbar=True)
                        pt.show()
                        #set some options
                        options = {'colheadercolor':'green','floatprecision': 5}
                        config.apply_options(options, pt)
            pt.show()
            return

app = TestApp()
#launch the app
app.mainloop()







Sub-class the Table

Override the right click popup menu:

class MyTable(Table):
    """Custom table class inherits from Table. You can then override required methods"""
    def __init__(self, parent=None, **kwargs):
        Table.__init__(self, parent, **kwargs)
        return

          def handle_left_click(self, event):
        """Example - override left click"""

        Table.handle_left_click(self, event)
  #do custom code here
        return

    def popupMenu(self, event, rows=None, cols=None, outside=None):
        """Custom right click menu"""

        popupmenu = Menu(self, tearoff = 0)
        def popupFocusOut(event):
            popupmenu.unpost()
                                # add commands here
    # self.app is a reference to the parent app
        popupmenu.add_command(label='do stuff', command=self.app.stuff)
        popupmenu.bind("<FocusOut>", popupFocusOut)
        popupmenu.focus_set()
        popupmenu.post(event.x_root, event.y_root)
        return popupmenu







Table methods

You can use the Table class methods to directly access data and perform many more functions. Check the API for all the methods. Some examples are given here:

#add 10 empty columns
table.autoAddColumns(10)
#resize the columns to fit the data better
table.autoResizeColumns()
#clear the current formatting
table.clearFormatting()
#reduce column witdths proportionally
table.contractColumns()
#get selected column
table.getSelectedColumn()
#sort by column index 0
table.sortTable(0)
#enlarge all table elements
table.zoomIn()
#set row colors
table.setRowColors(rows=range(2,100,2), clr='lightblue', cols='all')
#delete selected rows
table.setSelectedRows([[4,6,8,10]])
#delete current row
table.deleteRow()
#set current row
table.setSelectedRow(10)
#insert below current row
table.insertRow()







Accessing and modifying data directly

The tables use a pandas DataFrame object for storing the underlying data. If you are not familiar with pandas you should learn the basics if you need to access or manipulate the table data. See http://pandas.pydata.org/pandas-docs/stable/10min.html

Each table has an object called model with has the dataframe inside it. The dataframe is referred to as df. So to access the data on a table you can use:

df = table.model.df





Examples of simple dataframe operations. Remember when you update the dataframe you will need to call table.redraw() to see the changes reflected:

df.drop(0) #delete column with this index
df.T #transpose the DataFrame
df.drop(columns=['x'])







Set table attributes

You can set table attributes directly such as these examples:

            table.textcolor = 'blue'
            table.cellbackgr = 'white'
            table.boxoutlinecolor = 'black'
            #set header colors
            self.table.rowheader.bgcolor = 'orange'
            self.table.colheader.bgcolor = 'lightgreen'
            self.table.colheader.textcolor = 'black'
            #make editable or not
table.editable = False







Set Preferences

Preferences are normally loaded from a configuration file that can be edited manually or via the menu. You can also programmatically set these preferences using the config module:

#load from a config file if you need to (done by default when tables are created)
options = config.load_options()
#options is a dict that you can set yourself
options = {'floatprecision': 2}
config.apply_options(options, table)





You can set the following configuration values:

{'align': 'w',
 'cellbackgr': '#F4F4F3',
 'cellwidth': 80,
 'floatprecision': 2,
 'thousandseparator': '',
 'font': 'Arial',
 'fontsize': 12,
 'fontstyle': '',
 'grid_color': '#ABB1AD',
 'linewidth': 1,
 'rowheight': 22,
 'rowselectedcolor': '#E4DED4',
 'textcolor': 'black'}







Table Coloring

You can set column colors by setting the key in the columncolors dict to a valid hex color code. Then just redraw:

table.columncolors['mycol'] = '#dcf1fc' #color a specific column
table.redraw()





You can set row and cell colors in several ways. table.rowcolors is a pandas dataframe that mirrors the current table and stores a color for each cell. It only adds columns as needed. You can update this manually but it is easiest to use the following methods:

table.setRowColors(rows, color) #using row numbers
table.setColorByMask(column, mask, color) #using a pre-defined mask
table.redraw()





To color by column values:

table.multiplecollist = [cols] #set the selected columns
table.setColorbyValue()
table.redraw()





To clear formatting:

table.clearFormatting()
table.redraw()





Note: You should generally use a simple integer index for the table when using colors as there may be inconsistencies otherwise.



Writing DataExplore Plugins

Plugins are for adding custom functionality that is not present in the main application. They are implemented by sub-classing the Plugin class in the plugin module. This is a python script that can generally contain any code you wish. Usually the idea will be to implement a dialog that the user interacts with. But this could also be a single method that runs on the current table or all sheets at once.


Implementing a plugin

Plugins should inherit from the Plugin class. Though this is not strictly necessary for the plugin to function.

from pandastable.plugin import Plugin

You can simply copy the example plugin to get started.  All plugins need to have a main() method which is called by the application to launch them. By default this method contains the _doFrame() method which constructs a main frame as part of the current table frame. Usually you override main() and call _doFrame then add your own custom code with your widgets.

_doFrame method has the following lines which are always needed unless it is a non GUI plugin:

self.table = self.parent.getCurrentTable() #get the current table
#add the plugin frame to the table parent
self.mainwin = Frame(self.table.parentframe)
#pluginrow is 6 to make the frame appear below other widgets
self.mainwin.grid(row=pluginrow,column=0,columnspan=2,sticky='news')





You can also override the quit() and about() methods.



Non-table based plugins

Plugins that don’t rely on using the table directly do not need to use the above method and can have essentially anything in them as long as there is a main() method present. The Batch File Rename plugin is an example. This is a standalone utility launched in a separate toplevel window.

see https://github.com/dmnfarrell/pandastable/blob/master/pandastable/plugins/rename.py




Freezing the app

Dataexplore is available as an exe with msi installer for Windows. This was created using the cx_freeze package. For anyone wishing to freeze their tkinter app some details are given here. This is a rather hit and miss process as it seems to depend on your installed version of Python. Even when the msi/exe builds you need to check for runtime issues on another copy of windows to make sure it’s working.
Steps:



	Use a recent version of python (>=3.6 recommended) installed as normal and then using pip to install the dependencies that you normally need to run the app.


	The freeze script is found in the main pandastable folder, freeze.py. You can adopt it for your own app.


	Run the script using python freeze.py bdist_msi


	The resulting msi is placed in the dist folder. This is a 32 bit binary but should run fine on windows 10.







You can probably use Anaconda to do the same thing but we have not tested this.
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